home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Visual Cafe 3
/
Visual Cafe 3.ISO
/
Vcafe
/
Main.bin
/
ThreadGroup.java
< prev
next >
Wrap
Text File
|
1998-09-22
|
27KB
|
834 lines
/*
* @(#)ThreadGroup.java 1.34 98/07/01
*
* Copyright 1995-1998 by Sun Microsystems, Inc.,
* 901 San Antonio Road, Palo Alto, California, 94303, U.S.A.
* All rights reserved.
*
* This software is the confidential and proprietary information
* of Sun Microsystems, Inc. ("Confidential Information"). You
* shall not disclose such Confidential Information and shall use
* it only in accordance with the terms of the license agreement
* you entered into with Sun.
*/
package java.lang;
import java.io.PrintStream;
import sun.misc.VM;
/**
* A thread group represents a set of threads. In addition, a thread
* group can also include other thread groups. The thread groups form
* a tree in which every thread group except the initial thread group
* has a parent.
* <p>
* A thread is allowed to access information about its own thread
* group, but not to access information about its thread group's
* parent thread group or any other thread groups.
*
* @author unascribed
* @version 1.34, 07/01/98
* @since JDK1.0
*/
/* The locking strategy for this code is to try to lock only one level of the
* tree wherever possible, but otherwise to lock from the bottom up.
* That is, from child thread groups to parents.
* This has the advantage of limiting the number of locks that need to be held
* and in particular avoids having to grab the lock for the root thread group,
* (or a global lock) which would be a source of contention on a
* multi-processor system with many thread groups.
* This policy often leads to taking a snapshot of the state of a thread group
* and working off of that snapshot, rather than holding the thread group locked
* while we work on the children.
*/
public
class ThreadGroup {
ThreadGroup parent;
String name;
int maxPriority;
boolean destroyed;
boolean daemon;
boolean vmAllowSuspension;
int nthreads;
Thread threads[];
int ngroups;
ThreadGroup groups[];
/**
* Creates an empty Thread group that is not in any Thread group.
* This method is used to create the system Thread group.
*/
private ThreadGroup() { // called from C code
this.name = "system";
this.maxPriority = Thread.MAX_PRIORITY;
}
/**
* Constructs a new thread group. The parent of this new group is
* the thread group of the currently running thread.
*
* @param name the name of the new thread group.
* @since JDK1.0
*/
public ThreadGroup(String name) {
this(Thread.currentThread().getThreadGroup(), name);
}
/**
* Creates a new thread group. The parent of this new group is the
* specified thread group.
* <p>
* The <code>checkAccess</code> method of the parent thread group is
* called with no arguments; this may result in a security exception.
*
* @param parent the parent thread group.
* @param name the name of the new thread group.
* @exception NullPointerException if the thread group argument is
* <code>null</code>.
* @exception SecurityException if the current thread cannot create a
* thread in the specified thread group.
* @see java.lang.SecurityException
* @see java.lang.ThreadGroup#checkAccess()
* @since JDK1.0
*/
public ThreadGroup(ThreadGroup parent, String name) {
if (parent == null) {
throw new NullPointerException();
}
parent.checkAccess();
this.name = name;
this.maxPriority = parent.maxPriority;
this.daemon = parent.daemon;
this.vmAllowSuspension = parent.vmAllowSuspension;
this.parent = parent;
parent.add(this);
}
/**
* Returns the name of this thread group.
*
* @return the name of this thread group.
* @since JDK1.0
*/
public final String getName() {
return name;
}
/**
* Returns the parent of this thread group.
*
* @return the parent of this thread group. The top-level thread group
* is the only thread group whose parent is <code>null</code>.
* @since JDK1.0
*/
public final ThreadGroup getParent() {
checkAccess();
return parent;
}
/**
* Returns the maximum priority of this thread group. Threads that are
* part of this group cannot have a higher priority than the maximum
* priority.
*
* @return the maximum priority that a thread in this thread group
* can have.
* @since JDK1.0
*/
public final int getMaxPriority() {
return maxPriority;
}
/**
* Tests if this thread group is a daemon thread group. A
* daemon thread group is automatically destroyed when its last
* thread is stopped or its last thread group is destroyed.
*
* @return <code>true</code> if this thread group is a daemon thread group;
* <code>false</code> otherwise.
* @since JDK1.0
*/
public final boolean isDaemon() {
return daemon;
}
/**
* Tests if this thread group has been destroyed.
*
* @since JDK1.1
*/
public synchronized boolean isDestroyed() {
return destroyed;
}
/**
* Changes the daemon status of this thread group.
* <p>
* First, the <code>checkAccess</code> method of this thread group is
* called with no arguments; this may result in a security exception.
* <p>
* A daemon thread group is automatically destroyed when its last
* thread is stopped or its last thread group is destroyed.
*
* @param daemon if <code>true</code>, marks this thread group as
* a daemon thread group; otherwise, marks this
* thread group as normal.
* @exception SecurityException if the current thread cannot modify
* this thread.
* @see java.lang.SecurityException
* @see java.lang.ThreadGroup#checkAccess()
* @since JDK1.0
*/
public final void setDaemon(boolean daemon) {
checkAccess();
this.daemon = daemon;
}
/**
* Sets the maximum priority of the group.
* <p>
* First, the <code>checkAccess</code> method of this thread group is
* called with no arguments; this may result in a security exception.
* <p>
* Threads in the thread group that already have a higher priority
* are not affected.
*
* @param pri the new priority of the thread group.
* @exception SecurityException if the current thread cannot modify
* this thread group.
* @see java.lang.SecurityException
* @see java.lang.ThreadGroup#checkAccess()
* @since JDK1.0
*/
public final void setMaxPriority(int pri) {
int ngroupsSnapshot;
ThreadGroup[] groupsSnapshot;
synchronized (this) {
checkAccess();
if (pri < Thread.MIN_PRIORITY) {
maxPriority = Thread.MIN_PRIORITY;
} else if (pri < maxPriority) {
maxPriority = pri;
}
ngroupsSnapshot = ngroups;
if (groups != null) {
groupsSnapshot = new ThreadGroup[ngroupsSnapshot];
System.arraycopy(groups, 0, groupsSnapshot, 0, ngroupsSnapshot);
} else {
groupsSnapshot = null;
}
}
for (int i = 0 ; i < ngroupsSnapshot ; i++) {
groupsSnapshot[i].setMaxPriority(pri);
}
}
/**
* Tests if this thread group is either the thread group
* argument or one of its ancestor thread groups.
*
* @param g a thread group.
* @return <code>true</code> if this thread group is the thread group
* argument or one of its ancestor thread groups;
* <code>false</code> otherwise.
* @since JDK1.0
*/
public final boolean parentOf(ThreadGroup g) {
for (; g != null ; g = g.parent) {
if (g == this) {
return true;
}
}
return false;
}
/**
* Determines if the currently running thread has permission to
* modify this thread group.
* <p>
* If there is a security manager, its <code>checkAccess</code> method
* is called with this thread group as its argument. This may result
* in throwing a <code>SecurityException</code>.
*
* @exception SecurityException if the current thread is not allowed to
* access this thread group.
* @see java.lang.SecurityManager#checkAccess(java.lang.ThreadGroup)
* @since JDK1.0
*/
public final void checkAccess() {
SecurityManager security = System.getSecurityManager();
if (security != null) {
security.checkAccess(this);
}
}
/**
* Returns an estimate of the number of active threads in this
* thread group.
*
* @return the number of active threads in this thread group and in any
* other thread group that has this thread group as an ancestor.
* @since JDK1.0
*/
public int activeCount() {
int result;
// Snapshot sub-group data so we don't hold this lock
// while our children are computing.
int ngroupsSnapshot;
ThreadGroup[] groupsSnapshot;
synchronized (this) {
if (destroyed) {
return 0;
}
result = nthreads;
ngroupsSnapshot = ngroups;
if (groups != null) {
groupsSnapshot = new ThreadGroup[ngroupsSnapshot];
System.arraycopy(groups, 0, groupsSnapshot, 0, ngroupsSnapshot);
} else {
groupsSnapshot = null;
}
}
for (int i = 0 ; i < ngroupsSnapshot ; i++) {
result += groupsSnapshot[i].activeCount();
}
return result;
}
/**
* Copies into the specified array every active thread in this
* thread group and its subgroups.
* <p>
* An application should use the <code>activeCount</code> method to
* get an estimate of how big the array should be. If the array is
* too short to hold all the threads, the extra threads are silently
* ignored.
*
* @param list an array into which to place the list of threads.
* @return the number of threads put into the array.
* @see java.lang.ThreadGroup#activeCount()
* @since JDK1.0
*/
public int enumerate(Thread list[]) {
return enumerate(list, 0, true);
}
/**
* Copies into the specified array every active thread in this
* thread group. If the <code>recurse</code> flag is
* <code>true</code>, references to every active thread in this
* thread's subgroups are also included. If the array is too short to
* hold all the threads, the extra threads are silently ignored.
* <p>
* An application should use the <code>activeCount</code> method to
* get an estimate of how big the array should be.
*
* @param list an array into which to place the list of threads.
* @param recurse a flag indicating whether also to include threads
* in thread groups that are subgroups of this
* thread group.
* @return the number of threads placed into the array.
* @see java.lang.ThreadGroup#activeCount()
* @since JDK1.0
*/
public int enumerate(Thread list[], boolean recurse) {
return enumerate(list, 0, recurse);
}
private int enumerate(Thread list[], int n, boolean recurse) {
int ngroupsSnapshot = 0;
ThreadGroup[] groupsSnapshot = null;
synchronized (this) {
if (destroyed) {
return 0;
}
int nt = nthreads;
if (nt > list.length - n) {
nt = list.length - n;
}
if (nt > 0) {
System.arraycopy(threads, 0, list, n, nt);
n += nt;
}
if (recurse) {
ngroupsSnapshot = ngroups;
if (groups != null) {
groupsSnapshot = new ThreadGroup[ngroupsSnapshot];
System.arraycopy(groups, 0, groupsSnapshot, 0, ngroupsSnapshot);
} else {
groupsSnapshot = null;
}
}
}
if (recurse) {
for (int i = 0 ; i < ngroupsSnapshot ; i++) {
n = groupsSnapshot[i].enumerate(list, n, true);
}
}
return n;
}
/**
* Returns an estimate of the number of active groups in this
* thread group.
*
* @return the number of active thread groups with this thread group as
* an ancestor.
* @since JDK1.0
*/
public int activeGroupCount() {
int ngroupsSnapshot;
ThreadGroup[] groupsSnapshot;
synchronized (this) {
if (destroyed) {
return 0;
}
ngroupsSnapshot = ngroups;
if (groups != null) {
groupsSnapshot = new ThreadGroup[ngroupsSnapshot];
System.arraycopy(groups, 0, groupsSnapshot, 0, ngroupsSnapshot);
} else {
groupsSnapshot = null;
}
}
int n = ngroupsSnapshot;
for (int i = 0 ; i < ngroupsSnapshot ; i++) {
n += groupsSnapshot[i].activeGroupCount();
}
return n;
}
/**
* Copies into the specified array references to every active
* subgroup in this thread group.
* <p>
* An application should use the <code>activeGroupCount</code>
* method to get an estimate of how big the array should be. If the
* array is too short to hold all the thread groups, the extra thread
* groups are silently ignored.
*
* @param list an array into which to place the list of thread groups.
* @return the number of thread groups put into the array.
* @see java.lang.ThreadGroup#activeGroupCount()
* @since JDK1.0
*/
public int enumerate(ThreadGroup list[]) {
return enumerate(list, 0, true);
}
/**
* Copies into the specified array references to every active
* subgroup in this thread group. If the <code>recurse</code> flag is
* <code>true</code>, references to all active subgroups of the
* subgroups and so forth are also included.
* <p>
* An application should use the <code>activeGroupCount</code>
* method to get an estimate of how big the array should be.
*
* @param list an array into which to place the list of threads.
* @param recurse a flag indicating whether to recursively enumerate
* all included thread groups.
* @return the number of thread groups put into the array.
* @see java.lang.ThreadGroup#activeGroupCount()
* @since JDK1.0
*/
public int enumerate(ThreadGroup list[], boolean recurse) {
return enumerate(list, 0, recurse);
}
private int enumerate(ThreadGroup list[], int n, boolean recurse) {
int ngroupsSnapshot = 0;
ThreadGroup[] groupsSnapshot = null;
synchronized (this) {
if (destroyed) {
return 0;
}
int ng = ngroups;
if (ng > list.length - n) {
ng = list.length - n;
}
if (ng > 0) {
System.arraycopy(groups, 0, list, n, ng);
n += ng;
}
if (recurse) {
ngroupsSnapshot = ngroups;
if (groups != null) {
groupsSnapshot = new ThreadGroup[ngroupsSnapshot];
System.arraycopy(groups, 0, groupsSnapshot, 0, ngroupsSnapshot);
} else {
groupsSnapshot = null;
}
}
}
if (recurse) {
for (int i = 0 ; i < ngroupsSnapshot ; i++) {
n = groupsSnapshot[i].enumerate(list, n, true);
}
}
return n;
}
/**
* Stops all processes in this thread group.
* <p>
* First, the <code>checkAccess</code> method of this thread group is
* called with no arguments; this may result in a security exception.
* <p>
* This method then calls the <code>stop</code> method on all the
* threads in this thread group and in all of its subgroups.
*
* @exception SecurityException if the current thread is not allowed
* to access this thread group or any of the threads in
* the thread group.
* @see java.lang.SecurityException
* @see java.lang.Thread#stop()
* @see java.lang.ThreadGroup#checkAccess()
* @since JDK1.0
*/
public final void stop() {
int ngroupsSnapshot;
ThreadGroup[] groupsSnapshot;
synchronized (this) {
checkAccess();
for (int i = 0 ; i < nthreads ; i++) {
threads[i].stop();
}
ngroupsSnapshot = ngroups;
if (groups != null) {
groupsSnapshot = new ThreadGroup[ngroupsSnapshot];
System.arraycopy(groups, 0, groupsSnapshot, 0, ngroupsSnapshot);
} else {
groupsSnapshot = null;
}
}
for (int i = 0 ; i < ngroupsSnapshot ; i++) {
groupsSnapshot[i].stop();
}
}
/**
* Suspends all processes in this thread group.
* <p>
* First, the <code>checkAccess</code> method of this thread group is
* called with no arguments; this may result in a security exception.
* <p>
* This method then calls the <code>suspend</code> method on all the
* threads in this thread group and in all of its subgroups.
*
* @exception SecurityException if the current thread is not allowed
* to access this thread group or any of the threads in
* the thread group.
* @see java.lang.SecurityException
* @see java.lang.Thread#suspend()
* @see java.lang.ThreadGroup#checkAccess()
* @since JDK1.0
*/
public final void suspend() {
int ngroupsSnapshot;
ThreadGroup[] groupsSnapshot;
synchronized (this) {
checkAccess();
for (int i = 0 ; i < nthreads ; i++) {
threads[i].suspend();
}
ngroupsSnapshot = ngroups;
if (groups != null) {
groupsSnapshot = new ThreadGroup[ngroupsSnapshot];
System.arraycopy(groups, 0, groupsSnapshot, 0, ngroupsSnapshot);
} else {
groupsSnapshot = null;
}
}
for (int i = 0 ; i < ngroupsSnapshot ; i++) {
groupsSnapshot[i].suspend();
}
}
/**
* Resumes all processes in this thread group.
* <p>
* First, the <code>checkAccess</code> method of this thread group is
* called with no arguments; this may result in a security exception.
* <p>
* This method then calls the <code>resume</code> method on all the
* threads in this thread group and in all of its sub groups.
*
* @exception SecurityException if the current thread is not allowed to
* access this thread group or any of the threads in the
* thread group.
* @see java.lang.SecurityException
* @see java.lang.Thread#resume()
* @see java.lang.ThreadGroup#checkAccess()
* @since JDK1.0
*/
public final void resume() {
int ngroupsSnapshot;
ThreadGroup[] groupsSnapshot;
synchronized (this) {
checkAccess();
for (int i = 0 ; i < nthreads ; i++) {
threads[i].resume();
}
ngroupsSnapshot = ngroups;
if (groups != null) {
groupsSnapshot = new ThreadGroup[ngroupsSnapshot];
System.arraycopy(groups, 0, groupsSnapshot, 0, ngroupsSnapshot);
} else {
groupsSnapshot = null;
}
}
for (int i = 0 ; i < ngroupsSnapshot ; i++) {
groupsSnapshot[i].resume();
}
}
/**
* Destroys this thread group and all of its subgroups. This thread
* group must be empty, indicating that all threads that had been in
* this thread group have since stopped.
*
* @exception IllegalThreadStateException if the thread group is not
* empty or if the thread group has already been destroyed.
* @exception SecurityException if the current thread cannot modify this
* thread group.
* @since JDK1.0
*/
public final void destroy() {
int ngroupsSnapshot;
ThreadGroup[] groupsSnapshot;
synchronized (this) {
checkAccess();
if (destroyed || (nthreads > 0)) {
throw new IllegalThreadStateException();
}
ngroupsSnapshot = ngroups;
if (groups != null) {
groupsSnapshot = new ThreadGroup[ngroupsSnapshot];
System.arraycopy(groups, 0, groupsSnapshot, 0, ngroupsSnapshot);
} else {
groupsSnapshot = null;
}
if (parent != null) {
destroyed = true;
ngroups = 0;
groups = null;
nthreads = 0;
threads = null;
}
}
for (int i = 0 ; i < ngroupsSnapshot ; i += 1) {
groupsSnapshot[i].destroy();
}
if (parent != null) {
parent.remove(this);
}
}
/**
* Adds the specified Thread group to this group.
* @param g the specified Thread group to be added
* @exception IllegalThreadStateException If the Thread group has been destroyed.
*/
private final void add(ThreadGroup g){
synchronized (this) {
if (destroyed) {
throw new IllegalThreadStateException();
}
if (groups == null) {
groups = new ThreadGroup[4];
} else if (ngroups == groups.length) {
ThreadGroup newgroups[] = new ThreadGroup[ngroups * 2];
System.arraycopy(groups, 0, newgroups, 0, ngroups);
groups = newgroups;
}
groups[ngroups] = g;
// This is done last so it doesn't matter in case the
// thread is killed
ngroups++;
}
}
/**
* Removes the specified Thread group from this group.
* @param g the Thread group to be removed
* @return if this Thread has already been destroyed.
*/
private void remove(ThreadGroup g) {
synchronized (this) {
if (destroyed) {
return;
}
for (int i = 0 ; i < ngroups ; i++) {
if (groups[i] == g) {
ngroups -= 1;
System.arraycopy(groups, i + 1, groups, i, ngroups - i);
// Zap dangling reference to the dead group so that
// the garbage collector will collect it.
groups[ngroups] = null;
break;
}
}
if (nthreads == 0) {
notifyAll();
}
if (daemon && (nthreads == 0) && (ngroups == 0)) {
destroy();
}
}
}
/**
* Adds the specified Thread to this group.
* @param t the Thread to be added
* @exception IllegalThreadStateException If the Thread group has been destroyed.
*/
void add(Thread t) {
synchronized (this) {
if (destroyed) {
throw new IllegalThreadStateException();
}
if (threads == null) {
threads = new Thread[4];
} else if (nthreads == threads.length) {
Thread newthreads[] = new Thread[nthreads * 2];
System.arraycopy(threads, 0, newthreads, 0, nthreads);
threads = newthreads;
}
threads[nthreads] = t;
// This is done last so it doesn't matter in case the
// thread is killed
nthreads++;
}
}
/**
* Removes the specified Thread from this group.
* @param t the Thread to be removed
* @return if the Thread has already been destroyed.
*/
void remove(Thread t) {
synchronized (this) {
if (destroyed) {
return;
}
for (int i = 0 ; i < nthreads ; i++) {
if (threads[i] == t) {
System.arraycopy(threads, i + 1, threads, i, --nthreads - i);
// Zap dangling reference to the dead thread so that
// the garbage collector will collect it.
threads[nthreads] = null;
break;
}
}
if (nthreads == 0) {
notifyAll();
}
if (daemon && (nthreads == 0) && (ngroups == 0)) {
destroy();
}
}
}
/**
* Prints information about this thread group to the standard
* output. This method is useful only for debugging.
*
* @since JDK1.0
*/
public void list() {
list(System.out, 0);
}
void list(PrintStream out, int indent) {
int ngroupsSnapshot;
ThreadGroup[] groupsSnapshot;
synchronized (this) {
for (int j = 0 ; j < indent ; j++) {
out.print(" ");
}
out.println(this);
indent += 4;
for (int i = 0 ; i < nthreads ; i++) {
for (int j = 0 ; j < indent ; j++) {
out.print(" ");
}
out.println(threads[i]);
}
ngroupsSnapshot = ngroups;
if (groups != null) {
groupsSnapshot = new ThreadGroup[ngroupsSnapshot];
System.arraycopy(groups, 0, groupsSnapshot, 0, ngroupsSnapshot);
} else {
groupsSnapshot = null;
}
}
for (int i = 0 ; i < ngroupsSnapshot ; i++) {
groupsSnapshot[i].list(out, indent);
}
}
/**
* Called by the Java Virtual Machine when a thread in this
* thread group stops because of an uncaught exception.
* <p>
* The <code>uncaughtException</code> method of
* <code>ThreadGroup</code> does the following:
* <ul>
* <li>If this thread group has a parent thread group, the
* <code>uncaughtException</code> method of that parent is called
* with the same two arguments.
* <li>Otherwise, this method determines if the <code>Throwable</code>
* argument is an instance of <code>ThreadDeath</code>. If so, nothing
* special is done. Otherwise, the <code>Throwable</code>'s
* <code>printStackTrace</code> method is called to print a stack
* backtrace to the standard error stream.
* </ul>
* <p>
* Applications can override this method in subclasses of
* <code>ThreadGroup</code> to provide alternative handling of
* uncaught exceptions.
*
* @param t the thread that is about to exit.
* @param e the uncaught exception.
* @see java.lang.System#err
* @see java.lang.ThreadDeath
* @see java.lang.Throwable#printStackTrace(java.io.PrintStream)
* @since JDK1.0
*/
public void uncaughtException(Thread t, Throwable e) {
if (parent != null) {
parent.uncaughtException(t, e);
} else if (!(e instanceof ThreadDeath)) {
e.printStackTrace(System.err);
}
}
/**
* Used by VM to control lowmem implicit suspension.
*
* @since JDK1.1
*/
public boolean allowThreadSuspension(boolean b) {
this.vmAllowSuspension = b;
if (!b) {
VM.unsuspendSomeThreads();
}
return true;
}
/**
* Returns a string representation of this Thread group.
*
* @return a string representation of this thread group.
* @since JDK1.0
*/
public String toString() {
return getClass().getName() + "[name=" + getName() + ",maxpri=" + maxPriority + "]";
}
}